
Data Management
Class IX – Cloud Services (and more)



Revision
• We have now learned how to use two very different types of 

database – SQL and NoSQL. We’ve imported our own research data 

into each of them and run various kinds of search queries.

• We’ve also seen how to use indexing to speed up database 

operations, and how to stream data so we can analyse data sets that 

are too big for the computer’s memory.



Today’s Class

• This is the second-to-last class, and I have two objectives…

• Firstly, I want to cover a few topics which have come up over the past week 
and I think it would be good to revise – especially with regard to tips and 
tricks for successfully importing data.

• Secondly, I want to introduce you very briefly to how Cloud services – and 
especially databases in the Cloud – can be used in research.



Tips for Data Import
1) Understanding Errors
• Programming error messages are honestly one of the worst things 

about doing data science. Everything else about using computers is
slowly getting easier and more user-friendly; error messages are still
stuck in the 1980s.
• However, trying to understand what an error message is saying to you 

is the quickest way to get good at fixing, or “debugging”, your 
programs and scripts.
• Don’t just say “it’s an error!” and panic; by learning some of the most 

common error messages, you can start to quickly figure out what’s 
causing your problems.



Error Messages in Python

• Python error messages are often huge – pages and pages of weird-looking 

information. The first thing to know is where the really useful bits in an error 

message are located:

• The top of the error message should include an arrow pointing to the line of you code where 

the error occurred;

• The bottom of the error message is an actual description of the kind of error that occurred.

• All the stuff in between those lines can usually be safely ignored!



Common Python Error Messages

• NameError: name ‘~~~’ is not defined
• This is probably the most common error you’ll encounter in Python. Luckily it means 

something very simple… You’ve tried to do something to an object that doesn’t actually exist. 
99% of the time, that means you’ve mis-spelled the name of an object, or just used the 
wrong name for it.

• ModuleNotFoundError: No module named ‘~~~’
• This is also pretty simple – it usually happens when you try to import a library, and it means 

that library isn’t installed on your system. Go to a terminal window and install it using conda

or pip, then try again.



Common Python Error Messages (2)

• TypeError:

• This is probably the second most common type of error, and it basically 

means that you’ve tried to do something using the wrong “type” of variable. 

A variable’s “type” is whether it’s a string, an integer, etc.

• This happens most often when you try to do mathematical operations but

your numbers are actually strings, not integers; or when you have missing 

data (“NoneType”) that your program doesn’t know how to handle.



Common Python Error Messages (2)

• SyntaxError:
• This error happens when your code has a mistake in it – the most common 

one is a missing bracket messing things up! Check carefully to make sure all 

your code is properly formatted; just one missing character can break 

everything.

• ProgrammingError:

• When you’re working with MySQL, a “ProgrammingError” usually means

there’s a syntax error not in your Python, but in your SQL code.



Other Errors
• There are a lot of other error messages you might encounter, and we can’t cover

them all here.

• The real trick to handling errors is…

• First, read the last line of the error message. They’re written in English, and while the

language is very technical, it can give you good hints; if something says “ConnectionError”, 

you can guess it’s to do with your connection (to a database or a website, perhaps), right?

• Second, copy and paste the error into Google. Just copy and paste the last line 

(SomethingError: error description here), and see what comes up. I bet a lot of other people 

have come across the same problem before! Websites like Stack Overflow are full of great 

advice for dealing with coding problems.



Tips for Data Import
2) Fixing Text Encoding Problems
• One of the most common problems you’ll encounter when you try to 

import data from any source – a file you downloaded, or received
from a colleague, or even a file you created yourself – is text 
encoding.
• This creates error messages too, of course: usually EncodingError or 
UnicodeError.
• You might see a message like “Unicode cannot decode byte x034 at
position 4”, or something similar. This means that the file you’re 
loading isn’t one that Python can read as Unicode, and probably uses 
a different encoding.



Fixing Text Encoding

• Fortunately, almost every import command (like read_csv() or just the regular 
open() file command) allows you to add a parameter:
• pd.read_csv(“filename.csv”, encoding=“latin1”)

• Unfortunately, figuring out what encoding to set in that parameter is often a 

matter of trial and error. “latin1” is a popular (but outdated) encoding for 
European languages, so it’s worth trying that first. “cp1252” is another old 
encoding commonly used for European texts.

• Japanese text is often encoded in “shift_jis”, and Chinese text in “big5”. 



Tips for Data Import
3) Moving data to and from R
• A lot of data science projects involve doing work in both Python and R. Python is much 

more well-suited for some tasks – handling databases and cloud services, doing complex 

machine learning, and so on – while R has better libraries for many kinds of statistics.

• Moving data between Python and R can be tricky. A lot of you have tried using pyreadr –

which reads R data files in Python – or rpy2 – which lets you run R commands from 

Python – with limited success.

• The most failsafe way to do this is actually to use the Feather file format, which saves a 

Python or R data frame in a secure, open format that can be easily shared with other 

users or imported into a different program



Using Feather in R and Python

• In R, you need to install and import the feather library. Then you can 
save a dataframe to disc, or load one into R from disc, by using 
commands like:
• write_feather(my_dataframe, “my_filename.feather”)
• my_dataframe <- read_feather(“my_filename.feather”)

• In Python, install the pyarrow library, and you can load and save 
Feather files directly from pandas…
• my_dataframe.to_feather(“my_filename.feather”)
• my_dataframe = pd.read_feather(“my_filename.feather”)



A quick note on Feather…

• Feather is a really efficient and safe way to move data frames between R and 

Python, or to share data frames with your colleagues.

• However, Feather assumes that your data frames have a regular shape… In other 

words, if your data frame does something unusual like storing lists inside columns 

(breaking the “2D table” concept of a data frame), you can’t save it to Feather.

• In general, if you need to store lists or objects in a hierarchical way, you should be

using dictionaries rather than data frames.



Cloud Services



“Just someone else’s computer”

• Yes, the Cloud is really just a huge number of powerful computers belonging to Google, 
Amazon, Microsoft and so on.

• However, that simple description ignores the huge benefit of storing and processing your

data on “someone else’s computer”.

• Those computers are: 

• Much faster than your laptop; 

• More secure and regularly backed up than your laptop; 

• Have far more memory and storage than your laptop; 

• and are connected to the Internet at much higher speed than your WiFi connection.



Cloud Service Providers

• There are a lot of different Cloud Service providers out there. The 
three big ones are:
• Amazon (Web Services, or AWS)
• Google (Cloud Platform, GCP)
• Microsoft (Azure)

• All of those companies offer basically the same kinds of cloud services 
– and there are many smaller companies, such as Digital Ocean, 
which also provide specific kinds of cloud service.
• My research teams use Google Cloud, but AWS and Azure are also

good options.



What is a “Cloud Service”?

• Any company’s Cloud is made up of a host of different “services”. Services include 

things like:

• Servers and ‘virtual machines’ where you can run code – doing analytics, running a website,

etc.;

• Data storage services like databases or long-term data archives;

• API services giving access to advanced technologies like AI and machine learning, language 

translation, image or speech recognition, etc.

• Support services like security, communications etc., which help to tie together all those other 

services and allow them to work together.



Databases in the Cloud

• What we’re interested in in this class is the potential for storing, 
accessing and sharing data in the Cloud.
• There are two very different approaches to running a database in the

Cloud…
• You can run standard database software on a Cloud server – so for example, 

you could have MySQL or MongoDB running on a server provided by Amazon 
or Google. This would let all of your team access it from anywhere in the 
world.
• You could use a native Cloud database. You’d never know or care about where 

or how your data is stored – just put data in and take it out, trusting the Cloud 
company to worry about all the rest.



When to use the Cloud

• Cloud services are a great option in certain circumstances.

• If your data are simply too large to fit onto a standard laptop, huge Cloud databases can be a great
solution to the problem.

• If your data needs to be worked on by a lot of different people around the world, running a 
database in the Cloud is an effective solution.

• If you have at least one team member who is very literate about IT and programming (maybe this 
could be you?), and can set up Cloud access, security etc. for everyone else, then using a Cloud 
service can be a great idea.

• If you need to do something like running a web service (e.g. creating an interface for student RAs 
to work on tasks), Cloud services are ideal.



When not to use the Cloud

• The Cloud is a popular buzzword… but it’s not always the answer to a research 

team’s problems.

• If you don’t have someone who is a decent programmer and can get Cloud services working 

well for your team, trying to do so will just cause extra problems for you in the long run.

• If your data are small enough to just share on Dropbox, you don’t need the Cloud (well,

Dropbox kind of is a Cloud service…).

• If your data are extremely sensitive – e.g. commercial or private information – then you 

probably shouldn’t put it in the Cloud unless you’re incredibly confident about your IT 

security skills.


