
Data Management
Class VI – More Advanced MySQL

Revision
• In the last class, we (hopefully!) got to the point where you could:

• Design a MySQL table for your data (CREATE TABLE);

• Insert your data into the table (INSERT);

• Write queries to filter, sort and extract data (SELECT).

• These are the basics of any SQL system, from a database on your

laptop to a gigantic commercial data set in the cloud.

Today’s Objective

• So far, what we’ve done with SQL is really just a copy of what you can do with
data frames in R or Python.
• You might reasonably be thinking, “why am I learning a third way to do basically the same

things…?”

• Today we’re going to talk about three major things you can do in SQL that

generally aren’t possible in other software:

1. Streaming data

2. Indexing data

3. Querying across more than one table

About Skype Classes…

• Because we’re doing these classes on Skype, which was not the original

plan, there are some limits on the kind of in-class exercises we can do – I

can’t easily walk around and look at all the code you’re all writing.

• We’ll have to figure out a format for these classes that works for all of us,

but for now, it’s possible that the classes will be slightly shorter than usual,

in order to leave time for more one-to-one Skype or email consultations

where I can see the work you’re doing.

① Streaming Data

• One of the major reasons for using a database is to handle very big
tables of data – perhaps too large for Python or R to deal with on
their own.
• However, so far we’ve been moving data from SQL into Python just by

copying it into a data frame – using the cursor.fetchall() command,
which gets all of the data from our query.
• It’s still useful to be able to filter data, but if ultimately we’re copying

it all into Python or R, there’s no advantage if the data didn’t fit in the
first place.

Streaming Data (2)

• This is where streaming, rather than copying, information from the
database becomes important. You can think of it in exactly the same way as
“streaming” a video from Netflix or Youtube – you don’t have to download
and save the entire video file in order to watch it, right?

• We can do the same thing with data. Many kinds of analysis actually only
need to work on one piece of data at a time; for example, when we
tokenise text or turn it into a vector (term-document matrix), we actually
only work on one document at a time.

Streaming Data (3)

• To do this, instead of cursor.fetchall() we use cursor.fetchone(), which
just gets one row at a time from the database.
• By writing a loop in Python or R, you can get a single row of data, do

whatever processing you need (tokenisation, vectorisation etc.) and
then move on to the next row. You only need to store one row of data
at a time in memory.
• This approach is a little slower than storing everything in memory -

but it allows you to work with data so big that Python or R would just
give you an error if you tried to load it all.

Streaming Data (Example)

cur.execute(“SELECT * FROM big_data_table”)
while True:

one_record = cur.fetchone()
if one_record is None:

break
do_some_processing(one_record)

Streaming Data (Example Notes)

• The while command creates a loop which will keep going until the condition is False.

• Normally you’d write something like while x < 6: which would keep going until the variable x

became six or larger. In this case, we’re creating an infinite loop – the condition is always True. It

will only stop when our program uses the break command.

• The break command breaks out of any loop (while, for etc.) and moves on to the next

section of code outside the loop.

• When we reach the last record in our database, running cur.fetchone() again will

return “None” – so we can test for this to know when it’s time to use break and finish

the loop.

Streaming Data (Final Thoughts)

• You don’t need to use data streaming when the data is small enough to just
load into a data frame. Remember one of our first principles – don’t do
something complicated when there’s a simple option available to you.

• Often, analysing data requires going over the same data set multiple times
– tokenisation followed by vectorisation, for example, or training epochs of
a classifier or topic model. That’s fine! Don’t be afraid to stream data in
and out of the database multiple times. The database doesn’t get tired and
hasn’t joined a trade union.

② Indexing Data

• When you have a very big set of data, searching that data can start to take
a long time. No matter how powerful the database software is, or how
much memory and CPU power the PC it’s running on is, searching through
gigabytes of data still takes time.

• You can speed things up enormously, however, by creating an index –
telling the database that certain columns are the ones you’re most likely to
search for, so it can quietly create a quick look-up table in the background,
and return search results much faster.

Indexing Data (2)

• There are two ways to create an index:
• You can tell SQL what you want your indexes to be when you make the table

for the first time, using the CREATE TABLE statement. This allows the database
to update the indexes automatically every time you add a new piece of data.
• Alternatively, you can define an index later on, using the ALTER TABLE

statement. This forces the database to create a new index for all the data
already in the table – if there’s a lot of data there, this can take a long time.
• Since we already made some data tables, we’ll focus on the ALTER TABLE

command.

• Whichever approach you use, actually using the index is transparent –
you just use normal SELECT commands, and where possible the
database will use your index to speed things up.

How to choose your Index

• You should create indices for columns you’re going to use in your
search very often.
• For example, imagine you have a gigantic table of tweets, and you’re

interested in analysing tweets sent by individual users. That means
you’ll very often search on screen_name (or user_id) to get all the
tweets from an individual user.
• Normally, the database has to examine every tweet to see if the

screen name matches your target user. But if you create an index for
the screen_name column, it can quickly locate all those entries
without doing a full search of all the data.

Creating an index

• Here’s how to add a simple index to an existing table:

• You can also create an index from multiple columns. Let’s say you
know that you’re going to do a lot of searches that simultaneously
use both the name column and the city column:

ALTER TABLE my_table ADD INDEX (column_name)

ALTER TABLE my_table ADD INDEX (name, city)

Unique and Fulltext Indices
• You can also define a UNIQUE index. The value in this column can only

appear once in the the database – try to put in a row with the same
value again, and it’ll cause an error. This is useful when you’re storing
data that shouldn’t appear multiple times (like Twitter usernames).

• Another kind of index is FULLTEXT. This is usually set on a TEXT
column and allows you to search inside the text quickly. FULLTEXT
indices take some time to create, especially on a large database, but
they massively speed up searching.

ALTER TABLE my_table ADD UNIQUE INDEX (twitter_id)

ALTER TABLE my_table ADD FULLTEXT INDEX (article_text)

③ Querying Multiple Tables

• The final and perhaps most powerful unique feature of SQL compared
to data frames that we’ll talk about today is the JOIN command,
which lets you search and combine data from multiple different
tables.
• There are many cases where this is useful; often, you’ll want to create

a database storing different kinds of data (information about a user,
information about the people they follow on social media,
information about their social media posts, etc.) which is linked
together by keys, unique identifiers like Twitter IDs that are found in
all the different bits of data.

A set of linked tables…

Querying Multiple Tables (2)

• To write a query that uses data from multiple tables, we use the JOIN
command. This literally “joins” the two tables together, so all their
columns become part of one ‘super-table’ which we can filter and
query using the usual tools in the SELECT command.
• Usually, you want to make sure that the correct rows in Table A are

joined with the rows in Table B – for example, that a Twitter user in
Table A is only joined up with their own tweets from Table B.
• This is accomplished using the ON statement, which tells SQL how to

choose the rows to join.

Querying Multiple Tables (3)

• This is a very simple example of an SQL JOIN…

• This query would return a single row with all of table1’s columns and
all of table2’s columns, for every single row in either column where
the ‘id’ value was the same.

SELECT * FROM table1
INNER JOIN table2
ON table1.id = table2.id

Inner and Outer JOINs

• In the last example, we used an “INNER JOIN”. This is the most
common kind of JOIN, and it returns only the records in Table A and
Table B which have the same ID field.
• In other words, if there’s data in either table which doesn’t have matching

data in the other table – for example, a Twitter user in Table A who doesn’t
have any tweets stored in Table B – their data won’t be returned at all.

• It’s called an “inner” join because like the
Venn diagram opposite, only records which
overlap between the two tables are returned
in the query.

Inner and Outer JOINs

• There are also OUTER joins – the most commonly used of which are
LEFT and RIGHT joins.
• These will return records from tables even when there isn’t a matching record

in the other table – so the values in the columns from those tables will
become “NULL”, showing that there was no match.

• This is a FULL OUTER JOIN between Table A
and Table B. Every record from both tables
will be returned, with “NULL” values filling in
when there wasn’t a match in the other
table.

Inner and Outer JOINs (3)

• This is also a LEFT JOIN between Table A and
Table B – but here, we check if the Table B
columns are NULL (e.g. WHERE tableB.id IS
NULL) and only return those columns. This
way we can find which records in Table A
have no matches in Table B.

• This is a LEFT JOIN between Table A and
Table B. Every record from Table A is
returned, with “NULL” values filling in when
there wasn’t a match in Table B.

More on JOINs

• Using the JOIN commands is really powerful, as it allows you to combine
data from multiple tables easily. One common usage is to create a new
table to store your analysis results – this way, JOIN lets you easily access
the original data and analysis results together.

• It definitely takes a while to understand how these commands work. For
now, the main thing is to know that they exist and are available to you…
When you need to actually use them, you can always find detailed guides
and references online.

SQL Best Practices

• Finally for today, I thought we should talk a little bit about how to
most effectively use SQL databases.

• There are some things about SQL which are different to how you’re
used to doing things, and these can be a bit counter-intuitive.

1) Storage is Cheap
• A lot of people have the instinct to try to minimise the amount of

data they store – they avoid using too many tables, for example.
• In reality, storage is cheap. Even your smartphone probably has at

least 64Gb of storage – enough to store vast amounts of text data.
Cloud services only charge a few cents a month for storing gigabytes
of data.
• So… Don’t be afraid to store lots of tables, and in general, never

delete data. Instead of deleting data from tables, make a column
called “deleted” (or whatever you like) and set it to True when you
don’t want to use that data. You never know if it might be useful in
future.

2) Processing Takes Time

• Storage is cheap… But processing always takes time, even on the
fastest computer.
• Your objective should be to make sure that you never have to

recalculate the same analysis result twice.
• So, when you run an analysis – especially one that takes time, like

tokenisation – you can often benefit by making a new table and
storing your analysis results.
• Next time, you just look up the result in the database, rather than

having to run the analysis all over again!

3) Back up, back up, and back up some more.

• SQL databases do a lot of clever stuff to keep your data safe… But
ultimately, if they’re running on your laptop, they can’t rescue you if
you drop the laptop in a lake, or it gets stolen in a bar.

• MySQL provides a command line program called ‘mysqldump’ which
will ‘dump’ your databases and tables out into a backup file – which
you can then save on a network drive, an external hard disc etc.

• You can download tools to do this automatically every few days. It’s a
really, really good idea to do so!

